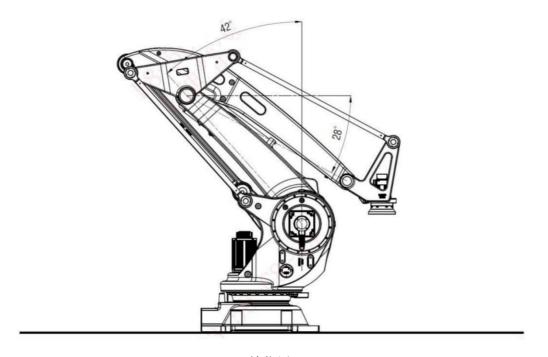
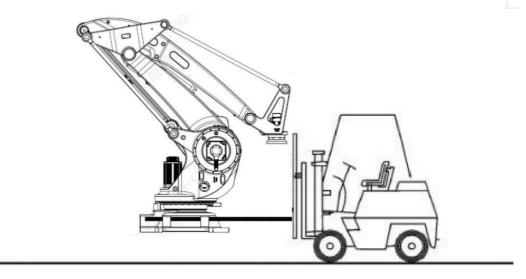
快速使用说明(AT180R3150A)

一、 搬运机器人


- 1. 安全注意事项:搬运和安装机器人时,务必按照艾创公司所示的方法进行。错误的方法可能导致机器人倾倒,引发事故;
 - 2. 检查机器人外包装是否有磕碰、损伤,拆开机器人外包装,检查机器人外观上是否有损坏;
- 3. 开箱后,请确认机器人各配件是否齐全,其型号是否与订单一致。若发现配件漏发、错发,请及时 联系。

类别	规格型号	数量/长度	单位	图片(标号)
本体	AT180R3150A	1	台	A
控制柜	FRC1.0	1	台	С
动力总线	12*6mm²+4*1.5mm²+4P*0.75mm² 抱闸加屏蔽	7	米	/
编码总线	$6 \times (2P \times 0.25 \text{mm2}(24 \text{AWG}))\text{C}$	7	米	/
示教器	T30	1	台	В


清单检查

4. 搬运方式

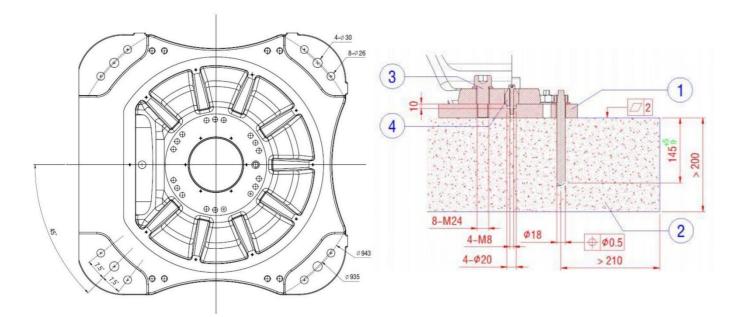
叉车搬运:为方便叉车式搬运,机器人的底座设有两个叉车插口。叉车既可以从机器人前侧也可以从 后侧起运。

运输位置

叉车搬运示意图

5. 搬运姿态各轴角度

机器人型号	AT180R3150A
J1 轴角度	0°
J2 轴角度	-132°
J3 轴角度	28°
J6 轴角度	0°


二、安装

1. 地面安装

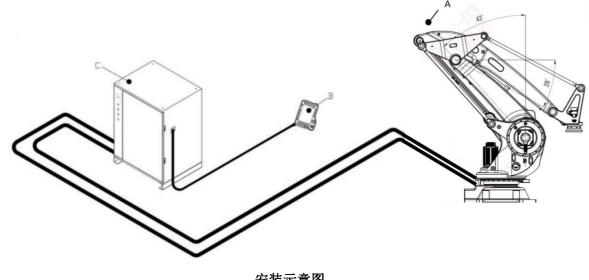
注意: 机器人安装底座,需考虑机器人对底座作用力以及底座结构,底座混凝土必须没有裂缝且符合 混凝土的质量规范,混凝土浇筑地基必须满足承载力以及压实需求。机器人的安装面不平整时,有可能发 生机器人变形,性能受影响。

混凝土强度等级 C20/C25 需符合以下规范:

- GB50010-2010《混凝土结构设计规范》
- GB/T50081-2002《普通混凝土力学性能试验

底板安装尺寸

地基横截面


机器人固定所需零部件表

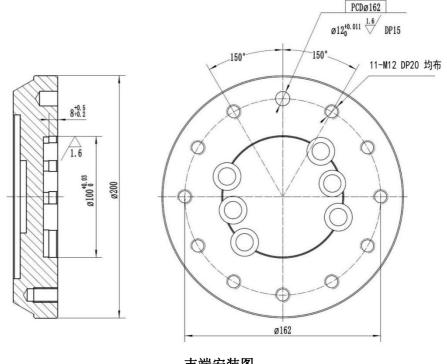
名称	规格	数量
底板	厚度>40mm	1
化学螺栓	M20	12
固定螺栓	M24×65-12.9	8

2. 机器人安装

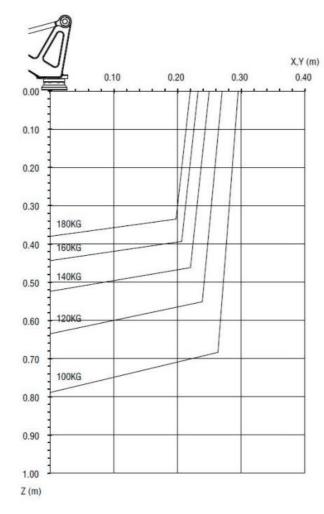
- 确保已阅读并理解安全使用须知中的信息;
- 确保由有资质的的安装人员安装机器人,安装规程必须符合当地的法律规则;
- 机器人的本体序列号必须与控制柜序列号匹配,序列号匹配错误将导致机器人精度偏差;
- 禁止粗暴插拔或摔打航插连接件。

注意: 如果机器人连接电源, 在开始任何安装工作时, 确保机器人接地线接地。

安装示意图

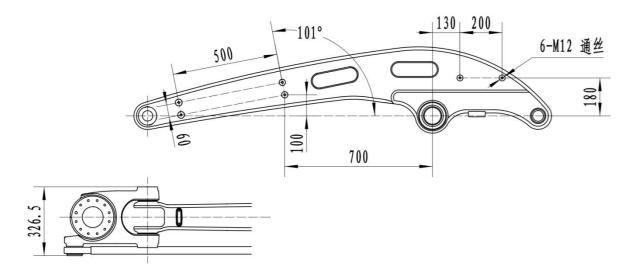

3. 通电试运行

- 外部漏电保护器应选择 B 型断路器,容量根据机型电流进行选择,若使用 C 型漏电保护器可能会引起 跳闸。
- 检查零点标签正确和粘贴可靠;
- 确认机器人的外形尺寸和动作范围,以确保人员与周边设备安全。


4. 工具安装

工具安装前需要确认如下事项:

- 确认机器人手腕的负载条件,不恰当的负载设置,会导致机器人运行异常,机械臂掉落,损害工具, 甚至造成人员伤亡和设备损毁等;
- 请严格遵守对机器人负载扭矩和负载惯量的限制;
- 法兰末端安装接口,请充分考虑到螺孔和销孔深度后选择使用长度合适螺栓和定位销,并考虑螺栓及 工具等零部件的防锈措施;



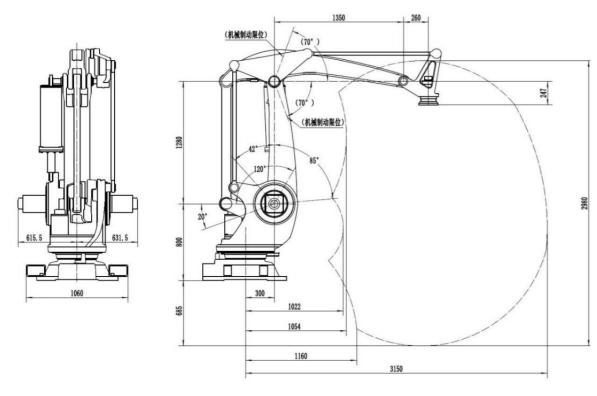
末端安装图

Payload 曲线图

5. 外部管线安装指导

外挂孔位及小臂最宽尺寸图

三、 参数说明


1. 机器人存放环境

机器人型号	AT180R3150A
本体重量 (kg)	1850
控制柜重量(kg)	165KG
控制柜尺寸(mm)	600*507*815
安装方式	地面
额定电流	28A
输入电压	AC380V +/-10%(3 相, 50hz)
环境温度/湿度	0~45°C/20~85%
振动值	0.5G 以下
其他	远离腐蚀性气体、液体或爆炸性气体;远离水
	源、油、粉尘;远离电气干扰源;

2. 通电前确认机器人的运动参数

手腕额定负	t载 (Kg)	180
最大工作半	径 (mm)	3150
动作自	自由度	4
	J1 轴	130
	J2 轴	130
额定负载速度(°/s)	J3 轴	130
	J6 轴	300
	J1 轴	±180
	J2 轴	-42~+85
关节运动范围 (°)	J3 轴	-20~+120
	J6 轴	±300
	J1 轴	31670
允许负载范围(N•m)	J2 轴	7808
几月贝敦尼图(N°III)	J3 轴	5128
	J6 轴	234.6
	J1 轴	3733.5
允许负载转动惯量	J2 轴	3005
$(K \cdot m^2)$	J3 轴	950

	J6 轴	9
IP 等级	本体	IP54
	腕部	IP65
重复定位精度	(mm)	±0.06

运动范围图

四、快速操作

1. 上电启动

将控制柜左上角的电源开关"右旋"(OFF→ON),如果一切正常,从示教器上可以看到系统自动进入 登录界面,用户可以根据不同的权限操作机器人了;如果有报错提示,请根据故障信息提示处理或根据故 障代码查看故障处理手册。

2. 点动操作

示教器以管理员身份登陆后,点击示教器下方的坐标按钮可进行坐标系类型切换。切换顺序依次为关 节坐标系 ->直角坐标系->工具坐标系->用户坐标系,切换结果显示于示教器状态栏位置。

将坐标系类型设置为关节坐标系,按住使能按键的同时,点击示教器右侧相应的"-"、"+"按键,即可调节工业机器人相应关节轴的运动角度。

3. 停机断电

操作步骤如下:

- 机器人运行完当前程序,按下"停止"键使机器人停止运动,也可直接暂停机器人;
- 旋转模式开关至"T0"手动低速模式;

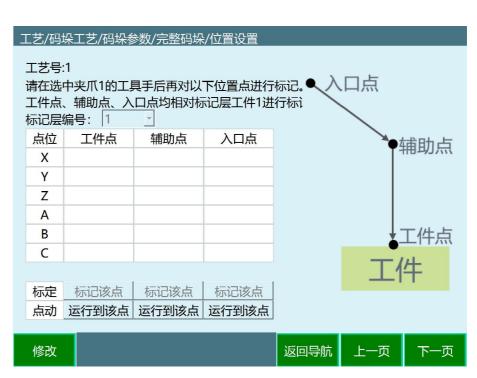
- 按下使能开关;
- 在手动低速模式下,通过点动或单步运动,将机器人运动至机械零点或工作原点;
- 松开使能开关;
- 将控制柜左上角电源开关"左旋"(OFF→ON)关闭电源,再次重启时请等待 5S 以上。

五、 码垛工艺

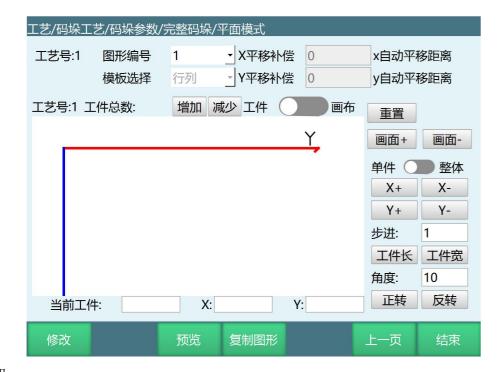
- 1. 完整码垛
- 抓手设置

● 托盘设置

● 工件参数



● 重叠模式



● 位置设置

● 平面模式

- 2. 简易码垛
- 抓手设置

● 位置设置

工艺/	工艺/码垛工艺/码垛参数/简易码垛/位置设置								
工艺	工艺号:1								
				以下位置点					
工件	点、	辅助点、)	(口点均相对	寸工件1进行	示记				
点	位 ;	起始工件点	列末端	行末端	高末端	辅	助点)	人口点
X									
Y									
Z									
Α									
В									
C									
标	定	标记该点	标记该点	标记该点	标记该点	标i	己该点	标	记该点
点	动	运行到该点	运行到该点	运行到该点	运行到该点	运行	到该点	运行	到该点
层数	, .		行数	, .	751	数:			
1 五 叉)	٠.		YZLI	•	7:	JXX ·			
修	攻						上一	页	完成
17									

六、 码垛指令

PALON

	功能		码垛开始判断		
		工艺号	工艺号 1-9		
		类型	码垛、卸跺		
		当前已码总数变量	把当前已码总数变量的值缓存到设置的变量里		
	参数	与前口时心效 又里	注: 可通过修改变量控制码第几层第几个工件		
		当前码垛层数变量	把当前码垛层数变量的值缓存到设置的变量里		
PALON		司 制阿外/// 双 义里	注: 可通过修改变量控制码第几层第几个工件		
		当前层跺数变量	把当前层跺数变量的值缓存到设置的变量里		
			注: 可通过修改变量控制码第几层第几个工件		
		变量名	INT、GINT		
		多重码垛	打开、关闭,码多个跺时打开多重码垛编写其中一		
) <u> </u>	个跺的程序即可		
	示例	PALON ID=5 TYPE=0 [-][-][-] MULTI=0			

注: 码垛开始 PALON 指令 3 个计数变量会直接写到配置中,不需要使用写入文件 FORCESET 指令

PALGRIPPER

	功能	选取抓手	
PALGRIPPER		工艺号	工艺号 1-9
	参数	抓手	抓手1、抓手2、抓手3、抓手4
	示例	PALGRIPPER ID=2	GRIPPERS=2

PALENTER

	功能	码垛入口点			
		工艺号	工艺号 1-9		
			关节插补、直线插补、圆弧插补		
			关节插补: 机器人将以关节插补的方式移动到该点		
		插补方式	直线插补; 机器人将以直线插补的方式移动到该点		
			圆弧插补:机器人将与另外两点(上一个		
			MOVJ/MOVL,下一点 MOVC)组成圆弧轨迹		
		VJ	速度范围 2-9999		
		PL	平滑过渡范围 0-5		
	参数	ACC	加速度范围 0-100		
PALENTER		DEC	减速度范围 0-100		
		XY 优化	优化 XY 轴运动路径		
			优化 Z 轴运动路径,需在码垛前插入一个固定点,		
			当入口点高度比固定点低时,入口点在高度上会		
			和固定点、辅助点处于同一值线上(侧视同一直		
			线,俯视不是同一直线,XY 轴不变)当入口点		
		Z 优化	高度位于固定点与辅助点之间时,入口点高度不		
			变,当入口点高度位于固定点、辅助点之上时,入		
			口点高度将优化到与固定点水平的高度,当入口		
			点、辅助点高度都高于固定点时,入口点高度将		
			优化到与辅助点水平高度		
	示例	PALENTER ID=	2 MovJ VJ=30% PL=2 ACC=20 DEC=20 OFF ON		

PALREAL

	功能	码垛工件点				
		工艺号	工艺号 1-9			
PALREAL	参数	插补方式	关节插补、直线插补、圆弧插补 关节插补:机器人将以关节插补的方式移动到该点 直线插补;机器人将以直线插补的方式移动到该点 圆弧插补:机器人将与另外两点(上一个 MOVJ/MOVL,下一点 MOVC)组成圆弧轨迹			
		VJ	速度范围 2-9999			
		PL	平滑过渡范围 0-5			
		ACC	加速度范围 0-100			
		DEC	减速度范围 0-100			
	示例	PALREAL 1	L ID=2 MovJ VJ=30% PL=2 ACC=20 DEC=20			

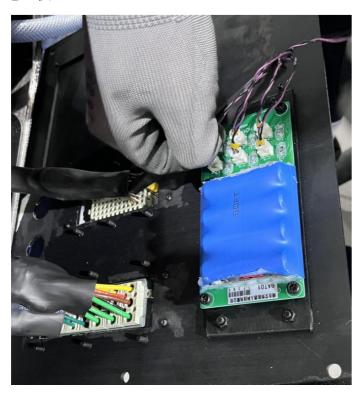
• PALCLEAR

功能 码垛复位,码垛状态清空				
PALCLEAR	参数	工艺号	工艺号	1-9
	示例	PALCLEAR ID=2		

• PALOFF

	功能	码垛结束判断		
		工艺号	工艺号 1-9	
PALOFF	参数	判断变量	BOOL, GBOOL	
		变量名	0, 1	
	示例	PALOFF ID=1 A001		

注: 若某个工艺号总工件数为 n, 执行 PALREAL 指令前 n-1 次, 变量值会被置为 0, 第 n 次执行 PALREAL 指令, 变量值会被置为 1。中途执行码垛复位, 变量会被复位为 0。


七、本体优势

- 1. 连杆机构
- 利用双平行四边形机构作为传动机构,来实现机器人腕部的俯仰动作,方便制造。
- 机器人 2 轴 3 轴并联,结构稳定、承载能力强、整天刚性大、重量轻。
 - 2. 弹簧缸

辅助电机,减轻电机负担

八、零件更换

- 1. 编码器电池板更换步骤如下
- 首先使用内六角扳手将机器人底座终端板的螺丝拧下
- 将插口全部拔下,拆下电池板

● 使用螺丝刀将固定编码器电池板的螺丝拧下,并拆下电池板

● 更换新电池板后安装步骤与拆卸步骤正好相反

注意:编码器线插口 X1 对应 CN1, X2 对应 CN2,,, X6 对应 CN6,更换后,需机器人不动,重新标定零点。

2. 机器人润滑油更换

- 机器人各轴部位的油腔必须按照下述步骤以每3年、或累计运转时间达11520小时的较短一方为周期进行更换油脂。
- 当机器人运行环境恶劣或小角度频繁使用或连续长时间高频率运行时,请将对应关节的润滑油脂更换 周期缩短至 3000 小时。

各关节供应的油脂量如下表:

位置	数量
J1 轴	8700m1
J2 轴	3700m1
J3 轴	3700m1
J6 轴	350m1

九、 维修保护

1. 日常检查

序号	检查项目	判定标准
1	渗油检查	检查是否有油从机器人产品中渗出来。如有,请将其擦拭干净。
2	振动、异响检查	检查各传动机是否有振动及异常噪音。
3	定位精度检查	检查是否与上次的示教位置偏离,停止位置是否有偏差。
4	控制柜风冷检查	检查控制柜内侧和后侧风扇是否通风顺畅,有无异响。
5	外围线缆固定件检查	是否完整齐全,有无磨损,有无锈蚀。
6	外围电气件	检查机器人外部线缆连接是否正常,有无破损,按钮是否正常。
7	警告检查	确认在示教器警告画面上有无出现警告。如有,请参照报警代码列表处理。

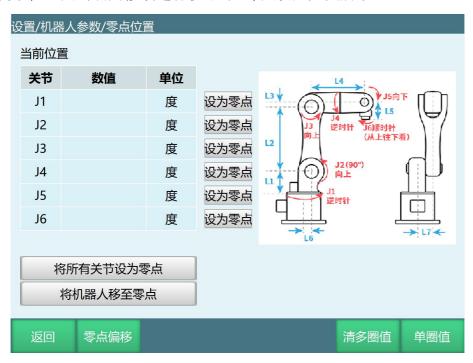
2. 定期检查

以规定的运转周期或运转累计时间为大致间隔标准进行检修和维修。执行定期维护步骤,能够保持机器人的最佳性能。定期检修及维修可由用户按照下表自行操作,也可联系我公司专业人员提供服务。

检修•维修周期							
(运转期间、运转累计时间)						检修•	检修步骤、处置
1个月	3 个月	1年	1.5年	3年	5年	维修项目	和维修步骤
320h	960h	3840h	5760	11520h	15360h		
							请确认机器人是否
							有由于外围设备发
							生干涉而产生的外
							伤或脱落。如果有发
0	0					外伤,油漆脱落	生干涉的情况,要排
0	U					的确认	除原因。另外,如果
							由于干涉产生的损
							坏比较大以至于影
							响使用的时候,要对
							相应部件进行更换。
						线缆保护套损	请确认机构内部线
0	0					大的确认 本的确认	缆的保护套是否有
						クレロ3.4H N	孔或者撕破等损坏。
							请检查机器人上是
	0					沾水的确认	否有溅上水或者油
	U					(1) 小的明八	液体。如有,要排除
							原因,擦掉液体。
						示教器、控制柜	扭曲、有无损伤。如
	0	0				线缆、机器人连	有,请及时更换线
		O	,			接线缆有无损	缆。
					坏的确认		
							请检查机器人本体
	0	0				飞溅、灰尘等的	是否有飞溅、灰尘等
						清洁	的附着或堆积。有堆
							积物的时候清洁。机

	0	0			控制柜内侧和 后侧冷却风扇 的动作确认	器人的可动部分特别注意清洁。 请确认冷却风扇是 否正常工作。如有异常,请及时更换。
		0			机器人本体编码器电池的更换	请对机器人本体底 座内部的编码器电 池进行更换。 *注意:更换之前请 将机器人运行到零 点位置。
			0		各轴减速器的 润滑油更换	请对各轴减速器的 润滑油进行更换。
				0	机器人内部鲜 线缆的更换	请对机器人内部线 缆进行更换。关于更 换方法,请向我公司 咨询。
ı	示 上 松		0	0	弹簧缸润滑油涂抹	运输或需要长时间 停止需要涂,工作状 态不需要涂

十、 零点校准


零点校准是指把每个机器人关节的角度与脉冲计数值关联起来的一种操作。零点校准操作目的是获得对应于零点位置的脉冲计数值。

"零点校准"是在出厂前完成的。日常操作中没有必要执行零点校准操作。但是以下情况下需要执行零点校准操作。

- 电机更换
- 编码器更换
- 减速器更换
- 线缆更换
- 编码器电池电量用完

零点校准操作步骤:

- 打开【设置】-【机器人参数】-【零点位置】 界面。
- 设置"关节坐标模式"下,机器人各个关节处于零位时的姿态如下图所示,其中下臂处于竖直状态,前臂处于水平状态,手腕部(第五关节)也处于水平状态。一般机器人在本体设计过程中已考虑了零位接口(例如凹槽、刻线、标尺等)。
- 点击想要设置零点的轴所对应的【设为零点】 按钮,或者通过点击【将所有关节设为零点】按钮来 一 次性将所有关节坐标设置为零点。
- 在弹出的修改提示框,点击确定修改进行机器 人零点设置如图所示。

- 点击【确定】按钮。
- 该轴(所有轴)零点位置设置成功。

十一、 其他

微信公众号

官网地址: www.aitron.com

服务热线: 0535-6377772